Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hydrologic exchange processes are critical for ecosystem services along river corridors. Meandering contributes to this exchange by driving channel water, solutes, and energy through the surrounding alluvium, a process called sinuosity‐driven hyporheic exchange. This exchange is embedded within and modulated by the regional groundwater flow (RGF), which compresses the hyporheic zone and potentially diminishes its overall impact. Quantifying the role of sinuosity‐driven hyporheic exchange at the reach‐to‐watershed scale requires a mechanistic understanding of the interplay between drivers (meander planform) and modulators (RGF) and its implications for biogeochemical transformations. Here, we use a 2D, vertically integrated numerical model for flow, transport, and reaction to analyze sinuosity‐driven hyporheic exchange systematically. Using this model, we propose a dimensionless framework to explore the role of meander planform and RGF in hydrodynamics and how they constrain nitrogen cycling. Our results highlight the importance of meander topology for water flow and age. We demonstrate how the meander neck induces a shielding effect that protects the hyporheic zone against RGF, imposing a physical constraint on biogeochemical transformations. Furthermore, we explore the conditions when a meander acts as a net nitrogen source or sink. This transition in the net biogeochemical potential is described by a handful of dimensionless physical and biogeochemical parameters that can be measured or constrained from literature and remote sensing. This work provides a new physically based model that quantifies sinuosity‐driven hyporheic exchange and biogeochemical reactions, a critical step toward their representation in water quality models and the design and assessment of river restoration strategies.more » « less
-
Abstract In this paper we demonstrate that several ubiquitous hyporheic exchange mechanisms can be represented simply as a one‐dimensional diffusion process, where the diffusivity decays exponentially with depth into the streambed. Based on a meta‐analysis of 106 previously published laboratory measurements of hyporheic exchange (capturing a range of bed morphologies, hydraulic conditions, streambed properties, and experimental approaches) we find that the reference diffusivity and mixing length‐scale are functions of the permeability Reynolds Number and Schmidt Number. These dimensionless numbers, in turn, can be estimated for a particular stream from the median grain size of the streambed and the stream's depth, slope, and temperature. Application of these results to a seminal study of nitrate removal in 72 headwater streams across the United States, reveals: (a) streams draining urban and agricultural landscapes have a diminished capacity for in‐stream and in‐bed mixing along with smaller subsurface storage zones compared to streams draining reference landscapes; (b) under steady‐state conditions nitrate uptake in the streambed is primarily biologically controlled; and (c) median reaction timescales for nitrate removal in the hyporheic zone are 0.5 and 20 hr for uptake by assimilation and denitrification, respectively. While further research is needed, the simplicity and extensibility of the framework described here should facilitate cross‐disciplinary discussions and inform reach‐scale studies of pollutant fate and transport and their scale‐up to watersheds and beyond.more » « less
-
Abstract Hyporheic exchange is a crucial control of the type and rates of streambed biogeochemical processes, including metabolism, respiration, nutrient turnover, and the transformation of pollutants. Previous work has shown that increasing discharge during an individual peak flow event strengthens biogeochemical turnover by enhancing the exchange of water and dissolved solutes. However, due to the nonsteady nature of the exchange process, successive peak flow events do not exhibit proportional variations in residence time and turnover, and in some cases, can reduce the hyporheic zones' biogeochemical potential. Here, we used a process‐based model to explore the role of successive peak flow events on the flow and transport characteristics of bedform‐induced hyporheic exchange. We conducted a systematic analysis of the impacts of the events' magnitude, duration, and time between peaks in the hyporheic zone's fluxes, penetration, and residence times. The relative contribution of each event to the transport of solutes across the sediment‐water interface was inferred from transport simulations of a conservative solute. In addition to temporal variations in the hyporheic flow field, our results demonstrate that the separation between two events determines the temporal evolution of residence time and that event time lags longer than the memory of the system result in successive events that can be treated independently. This study highlights the importance of discharge variability in the dynamics of hyporheic exchange and its potential implications for biogeochemical transformations and fate of contaminants along river corridors.more » « less
An official website of the United States government
